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Chapter 1: Introduction 

1.1 Research Background 

The future of military ships will be more affected by global efforts to cut carbon emissions, 

complicated supply chains in different parts of the world, and new technologies. As fleets 

move away from traditional fossil fuels, the cost of naval fuel at the point of usage 

becomes a very important strategic and budgetary factor. Military operations have a lot 

of extra logistical costs that commercial shipping doesn't have to deal with (Hunter et al., 

2021). These include transporting, storing, protecting, and deploying fuel, which can 

frequently increase the basic cost of gasoline several times. Navies are looking at 

alternatives to regular marine diesel, such as Hydrotreated Vegetable Oil (HVO), 

synthetic fuels, biofuels, and ethanol blends, since climate rules may become tighter 

(White, 2023). The costs of each form of fuel differ due to factors such as the ease of 

scaling up production, accessibility, global commerce, and defence-grade logistics. For 

strategic planning, ship design, and operational resilience, it's important to know how 

much these fuels will cost in the future at the point of use. This study looks at the prices 

of new marine fuels, what affects those costs, and how to make predictions about them. 

 

1.2 Research Rationale 

As climate change and energy security issues impact the way countries defend 

themselves, the choice of marine fuels for military ships is no longer only focused on how 

well they work. It is now based on how well they meet environmental standards, how easy 

they are to transport, and how cost-effective they are (Thombs et al., 2025). Traditional 

marine diesel is still the most common kind of fuel, but it is coming under more and more 

regulatory pressure from international climate agreements and carbon reduction targets. 

Alternative fuels like HVO, biofuels, synthetic fuels, and ethanol are becoming more 

popular since they have fewer emissions during their whole life cycle. But they aren't 

being used by the military yet because there is still some doubt about how much they 

really cost to use. This includes not just the cost of making them and selling them, but 

also the cost of safe transit, at-sea refuelling, infrastructure modifications, and tactical fuel 

protection (Lai and Zhang, 2021). This study is important because it gives military 

planners and naval architects data-driven information and forecasts that will help them 
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make long-term decisions about investments in fuel technology, fleet design, and 

operational sustainability. 

 

1.3 Aim and Objectives 

The aim is to carefully look at and assess the future cost of using different types of marine 

fuel aboard military ships, taking into account logistical, environmental, and geopolitical 

concerns. 

 

The following are the objectives: 

● To predict the overall cost at the point of use of different marine fuels like HVO to 

regular marine diesel in military operations. 

● To find and study the logistical, geopolitical, and infrastructure aspects that affect 

the cost of future marine fuels for military ships while they are being used. 

● To figure out how climate change policies and worldwide decarbonisation goals 

could affect the price and availability of marine diesel and other fuels in the future. 

● To create scenario-based models and graphs that show how fuel prices could 

change under different technical, environmental, and geopolitical scenarios. 

 

1.4 Research Question 

What are the expected future costs at the point of use for alternative marine fuels 

compared to regular diesel in military ships, and what are the main things that affect these 

prices? 

 

1.5 Problem Statement 

Climate rules, changing logistics, and geopolitical threats make it harder for military naval 

operations to plan for future fuel expenditures (Thombs et al., 2025). Alternative fuels add 

new challenges, and traditional diesel may not be as useful as it used to be. There isn't 

much information on what these fuels really cost when used in the military. 
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Chapter 2: Literature Review 

2.1 Alternative Marine Fuels and Their Cost Structures 

Hydrotreated Vegetable Oil (HVO), synthetic fuels, biofuels, and ethanol blends are some 

of the alternative marine fuels that are being looked at more and more for use by the navy 

since they produce fewer emissions during their lifetimes and are easier to follow the rules 

(Mun, 2021). HVO is made from used fats and vegetable oils and costs roughly $1.50 to 

$2.20 per litre, which is two to three times more than marine diesel. Biofuels may be quite 

different from each other depending on what they are made from. For example, algal-

based biofuels might cost up to $3.00 per litre, whereas waste-based biofuels can cost 

between $1.80 and $2.50. Fischer–Tropsch synthesis makes synthetic fuels, which are 

among of the most costly right now, costing more than $4.00 per litre since they need a 

lot of energy to make and there isn't much infrastructure for making them. Ethanol blends 

are cheaper (around $1.20 per litre), but they have less energy density, so one have to 

fill up more often (Herdzik, 2021). When one add in military-specific needs like fuel 

security, durability, and compatibility with older equipment, these price discrepancies are 

much bigger. Military systems have to think about more than just economic efficiency, 

such as mission readiness, cold start dependability, and deployment in different 

environments. This makes them more expensive to adopt. 

 

2.2 Logistical and Operational Challenges in Military Fuel Supply 

Military fuel logistics are quite complicated. They include many different tasks, such as 

long-distance transit, storage in difficult circumstances, distribution in the theatre, and 

protection from enemy interference. The US Department of Defence has calculated that 

the logistical tail for every litre of gasoline used at the front lines may raise the effective 

cost by 3 to 10 times. particular reports say that the fully burdened cost of fuel (FBCF) 

may be more than $15 to $25 per litre in particular combat situations (Ramsay et al., 

2023). Military ships typically need to be replenished while they are moving, which 

necessitates more ships, increases danger to operations, and relies on calm seas and 

safe supply routes. Fuel has to be moved via air, sea, and land, and there need to be 

backup plans like armoured convoys or refuelling assistance at sea to lower the danger. 

To prevent fires, contamination, and sabotage from happening, storage facilities must 
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fulfil high criteria. Also, basic infrastructure typically doesn't work with new fuels, which 

means that money has to be spent to make it compatible. During expeditionary 

deployments, the operational difficulty becomes worse since supply routes are longer and 

enemies might attack fuel depots, which is a big danger to operational continuity. 

 

2.3 Geopolitical and Environmental Influences on Fuel Availability and 

Pricing 

Changing political situations and quickly changing environmental rules affect the supply 

and prices of military marine fuels across the world. Fuel prices might suddenly go up 

when there are problems like embargoes, territorial conflicts, or blockades at marine 

chokepoints. For example, tensions in the Strait of Hormuz have led global petroleum 

prices to rise by 10–15% in only a few days. Militaries that work in areas with unstable 

politics have to pay more for supplies and protection. More and more places are using 

carbon pricing systems; more than 60 places have set up carbon taxes or emissions 

trading systems (Bilgili, 2023). These may raise the price of diesel and kerosene-based 

fuels by $50 to $100 each tonne of CO₂ released. New rules on the amount of sulphur in 

gasoline and its emissions during its lifetime are making it harder to get fuel and more 

expensive to follow the rules. Alternative fuels are less likely to be punished by 

regulations, but they have problems with production and delivery over the world, which 

makes them less trustworthy for use around the world. As climate goals develop stricter, 

governments may also keep clean fuels produced in their own countries for civilian or 

strategic use. This would make it harder for the military to obtain them and make imports 

more expensive. 

 

2.4 Scenario-Based Forecasting and Strategic Fuel Planning for Naval 

Operations 

Scenario-based forecasting models let navies figure out how much fuel will cost and what 

the hazards will be in different parts of the world in the future. In baseline scenarios where 

technology keeps getting better and regulations stay the same, HVO and biofuels might 

be as cheap as regular gasoline by 2035 (Boviatsis et al., 2022). Prices would stay around 

$1.80 per litre as supply chains become better. Synthetic fuel costs might treble, going 
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beyond $6.00 per litre, in situations with a lot of disruption, such as trade conflicts, a lack 

of raw materials, or unstable geopolitics. In climate-first scenarios, when carbon fines 

approach $150 per tonne and fossil fuels are strictly regulated, the effective cost of marine 

diesel would rise to more than $3.50 per litre. Forecasting systems also take into account 

how far along fleet electrification is, how much gasoline can be stored, and supply 

arrangements with other companies. For instance, a fleet of fully hybridised destroyers 

that use alternative fuels and battery systems may save 30% on fuel expenses over their 

lifespan, even though they cost more to buy up front. Strategic planning must also take 

into account how allies rely on each other, how to improve infrastructure, how to build up 

emergency reserves, and how to make ships more flexible with modular fuel (Bilgili, 

2021). These scenario plans will help shape procurement strategy, logistical architecture, 

and operational flexibility for the next 20 to 30 years. 

 

2.5 Literature Gap 

There is more and more research on how to decarbonise commercial shipping and if 

alternative marine fuels are economically viable. However, there is still a big gap in our 

knowledge of how to use them in military naval operations. Most of the research that has 

been done so far has looked at production costs and environmental advantages in civilian 

settings (Herdzik, 2021). They haven't looked at the special logistical, security, and 

tactical issues that military fleets have to deal with. It's also hard to find completely loaded 

cost models that are unique to using alternative fuels in battle or distant deployment 

situations. There hasn't been much research on how geopolitical instability, agreements 

between allies to share fuel, or weak infrastructure affect the availability and price of 

gasoline for military ships in the real world (Ramsay et al., 2023). Current fuel forecasting 

models also don't have the depth needed for scenario-based strategic planning that takes 

military objectives into account. There isn't much information on how rules like carbon 

taxes or international climate agreements will affect the cost of military fuel in the future. 

There is also a clear lack of research that blends economic analysis with the effects of 

naval architectural design. This research fills in these gaps by looking at the cost at the 

point of usage, taking into account logistics, the environment, and defence-specific 

issues, and giving naval planners tools to think forward about future fuel needs. 
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Chapter 3: Methods 

3.1 Research Design 

This study uses a quantitative forecasting research approach to figure out how much 

Hydrotreated Vegetable Oil (HVO) fuel for military ships will cost in the future. The method 

is both exploratory and predictive, using historical time-series data from 2022 to 2025. 

Using accurate industry data, the purpose is to create models of how costs are likely to 

change between 2026 and 2030. HVO is chosen because it is becoming more important 

as a long-lasting maritime fuel and for military logistics (Smigins et al., 2023). The study 

uses scenario-based analysis to take into account factors like carbon legislation, changes 

in the supply chain, and operational hazards. This design enables defensible forecasting 

outcomes to inform future naval procurement and energy strategy decisions. 

 

3.2 Data Sources and Collection 

The investigation included data from reliable secondary sources, such as Argus Media, 

VesperTool, and the U.S. Department of Energy's Alternative Fuels Data Centre (AFDC) 

at afdc.energy.gov. These sources provide real-world pricing for HVO between 2022 and 

2025, mostly in USD per metric tonne (Ershov et al., 2023). The data contains monthly 

and quarterly averages, with an emphasis on the ARA and West Europe markets in 

Europe. AFDC sets pricing standards for renewable and alternative fuels in both the U.S. 

and other countries. We checked all the data points and turned them into a structured 

time-series dataset for making predictions. This made sure that the data was consistent 

and accurate across years and measurement units. 

 

3.3 Variables and Unit Conversion 

The price of HVO per litre (USD/L) is the key dependent variable utilised. Prices that are 

reported by places like Argus Media and AFDC (afdc.energy.gov) are usually in USD per 

metric tonne (MT). To convert them into litres, we use a typical HVO density of 0.90 kg/L 

using the formula: Price (USD/L) = (Price per MT ÷ 1000) × 0.90 (Roque et al., 2023). 

This makes it possible to compare and predict things in a consistent way throughout time. 

The year is the independent input for the time variable, while scenario-specific modifiers 
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like geopolitical risks or carbon price are utilised for sensitivity analysis. To make the real-

world commodities data fit with the naval point-of-use needs that this research looks at, 

unit conversion is necessary. 

 

3.4 Forecasting Approach 

This research uses the Exponential Smoothing (ETS) and ARIMA models to provide time-

series forecasts of HVO fuel prices for the years 2026 to 2030. These models were 

chosen due to their ability to capture trends, seasonality, and level changes within limited 

data. ETS is good for smoothing out short-term changes and finding stable patterns, 

whereas ARIMA can handle residual autocorrelations and shock adjustments (Paris et 

al., 2021). We used historical HVO pricing data from 2022 to 2025 that we got from AFDC 

and Argus Media to train the models. We use Python's statsmodels and pmdarima 

packages to make predictions. Root Mean Squared Error (RMSE) was used to check how 

accurate each model was, which made sure that the military could plan for costs with 

confidence. 

 

3.5 Model Specification and Assumptions 

The chosen models were ETS with an additive trend and no seasonality, and 

ARIMA(p,d,q) with parameters found using the Akaike Information Criterion (AIC). The 

goal variable for both models was the yearly price of HVO per litre (USD/L). Some of the 

main assumptions are that the HVO density stays the same at 0.90 kg/L, the currency 

conversion stays the same, and the way AFDC and Argus report stays the same. It is 

also expected that there won't be any substantial policy changes or technology problems 

that would have a big effect on fuel output or demand throughout the projection period 

(Serrano et al., 2021). The models assume that present logistical and market 

circumstances will continue to be stable until they are changed by predetermined 

scenarios. This lets us concentrate on evaluating baseline fuel cost trends. 
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3.6 Scenario Development for Forecasting 

To enhance strategic relevance, three forecasting scenarios were developed: 

1. Baseline Scenario – assumes stable market conditions with moderate inflation. 

 

2. Regulatory Scenario – incorporates rising carbon taxes and stricter emission 

standards, increasing HVO costs by 15–20%. 

 

3. Geopolitical Disruption Scenario – simulates supply chain instability and naval 

conflict zones, applying a 25–30% cost surge. 

 

These scenarios were applied as multiplicative adjustment factors to the base model 

forecasts. Variables such as global oil prices, renewable fuel subsidies, and international 

trade tariffs were considered in constructing realistic risk models. This approach allows 

military planners to anticipate both expected and extreme fuel cost outcomes, aiding in 

procurement strategy and operational budgeting under uncertainty. 

 

3.7 Tools and Software Used 

We used Python 3.11 for the forecasting study, along with important modules like Pandas, 

NumPy, Statsmodels, and Pmdarima for modelling time series. Matplotlib and Seaborn 

helped with visualisation. Cleaning and changing the data were done in the Jupyter 

Notebook, which made sure that the process could be repeated and that it was clear. We 

used Excel to put together the data, change the currency from USD/MT to USD/L, and do 

some pre-processing. The data came from sites like afdc.energy.gov and Argus Media 

(Hor et al., 2023). We combined Python-based statistical tools with ETS and ARIMA 

forecasting pipelines to help with model diagnostics and scenario testing. The chosen 

tools made it easy to handle data, create models carefully, and run strong scenario 

simulations. This helped make solid 5-year HVO cost projections that were specific to 

military operations. 
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3.8 Validation and Accuracy Measures 

We used common statistical measures like Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) to check the model's 

accuracy. We used a train-test split of the historical HVO dataset (2022–2025) with an 

80:20 ratio to figure out how well the model fit and how accurate its predictions were. We 

employed residual analysis and ACF/PACF plots to look for autocorrelation, trend 

deviation, or overfitting. We chose the final model because it had the lowest AIC score 

and an acceptable level of error. To make things even more reliable, rolling-origin 

forecasting was also used for cross-validation. These steps made sure that the selected 

model could generalise effectively and consistently anticipate how HVO prices would 

fluctuate in the future based on real-world naval logistical situations. 

 

3.9 Limitations of the Methodology 

There are a few problems with the procedure. First, the fact that there isn't much past 

HVO data (2022–2025) makes forecasting models less sophisticated and less useful in 

general. Second, the costs of military logistics in real time, such as the Fully Burdened 

Cost of Fuel (FBCF), are not accessible to the public. Instead, estimations are based on 

civilian or export-market statistics from AFDC and Argus (Holzer et al., 2022). Third, the 

model assumes that everything will go in a straight line and doesn't take into consideration 

things like sudden changes in policy, wars throughout the world, or new technologies that 

make fuel production easier. Also, when converting from metric tonne to litre, an average 

density of 0.90 kg/L is used. This may change from batch to batch or supplier. Even with 

these limitations, the models may help with cost planning for military fuel strategy by 

pointing in the right direction. 

 

3.10 Ethical Considerations 

This study follows ethical research norms by exclusively utilising publicly accessible 

secondary data from reliable and open sources like afdc.energy.gov, Argus Media, and 

VesperTool. There was no contact with people and no personal or sensitive data was 

used. To preserve academic integrity, proper reference and acknowledgement of data 

sources have been followed all along. We built forecasting models and findings in a way 
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that was completely open, so that trends couldn't be changed or misrepresented (Macedo 

et al., 2025). Validating assumptions and explicitly stating restrictions helped to ensure 

that modelling tools were used in an ethical way. The report also doesn't endorse or 

promote any certain fuel provider or political goal; it just supports making decisions on 

defense-related energy planning that are good for the environment and the budget. 

 

Chapter 4: Findings and Analysis 

4.1 Overview of Forecasting Models Applied 

This research used three different methods to predict the future cost of Hydrotreated 

Vegetable Oil (HVO) for military use: ARIMA (AutoRegressive Integrated Moving 

Average), ETS (Exponential Smoothing), and a model based on the Compound Annual 

Growth Rate (CAGR). Based on historical data from 2022 to 2025, each technique gives 

a different way to find price trends. 

 

The pmdarima.auto_arima function runs the ARIMA model, which finds statistical patterns 

in the time series. This makes it a good choice for short historical datasets that may not 

be stationary (Valeika et al., 2022). On the other hand, ETS is a trend-focused model that 

smooths out data and gives more weight to recent observations. This makes it great for 

finding upward or negative trends in prices. The third technique, CAGR, uses a historical 

price change to get a mathematical growth rate and expects that growth will continue at 

an exponential pace. It is often used for financial and strategic forecasting, particularly 

when there isn't much data but it's evident that growth is going in the right direction. 

 

We trained all three models on real-world pricing data that we got from AFDC and Argus 

Media and turned it into USD/L. We looked at the outcomes to see how accurate, realistic, 

and strategically useful they were. Later, scenario-based changes (+15% regulatory, 

+30% geopolitical) were made to the CAGR prediction to provide military planners backup 

plans. 
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4.2 ARIMA Forecast Results and Interpretation 

We used the ARIMA model on the HVO pricing data from 2022 to 2025 to find possible 

autoregressive trends and predict prices for 2026 to 2030. The auto_arima function chose 

a model that met the best AIC criterion, which meant that it was the best balance between 

complexity and fit. The ARIMA output suggested that HVO prices will rise slowly 

throughout the projection period, starting at around USD 2.06/L in 2026 and reaching 

USD 2.73/L by 2030. 
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But since there wasn't much previous data and ARIMA tends to smooth things out, the 

growth rate seemed rather low. The expected yearly gains were linear instead of 

exponential, and they didn't have much volatility or fast growth (Kossarev et al., 2023). 

This could be based on the idea that the market is stable, but it doesn't take into 

consideration outside influences like sudden increases in demand, shocks to the supply 

chain, or price changes caused by government action. 

 

Also, ARIMA doesn't handle scenario-based stress testing on its own unless extra 

external regressors are included. Because of this, it isn't very useful in markets that are 

very volatile or that are sensitive to rules, like military fuels, unless it is changed. Still, the 

ARIMA findings provide us a baseline forecast for budgeting costs in a stable market, 

which helps us understand how prices tend to move without outside shocks. 

 

4.3 ETS Forecast Results and Trend Analysis 

We chose the Exponential Smoothing (ETS) model to give us a different look into future 

HVO prices by looking at the trend that has been happening in previous years. The ETS 

technique used an additive trend model without seasonality to show that HVO prices have 

been steadily rising from 2022 (USD 1.42/L) to 2025 (USD 1.95/L). The forecast findings 
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showed a steady rise, starting at USD 2.06/L in 2026 and ending at around USD 2.73/L 

by 2030, which is close to ARIMA (Serrano et al., 2021). 

 

ETS is different because it gives greater weight to recent data, which makes it more 

sensitive to changes in price direction. In places where short-term trends are thought to 

be more accurate than historical averages, this makes ETS very valuable. The ETS 

model's projection was quite similar in size to ARIMA's, but the changes from year to year 

were smoother. 

 

ETS did a good job of keeping track of recent price movements, but it doesn't 

automatically integrate outside factors like changes in policy or geopolitical issues. It also 

implies that the previous pattern will continue into the future, which may not be the case 

in military fuel markets that are subject to unexpected changes. Even so, ETS gives a 

clear and easy-to-understand projection that may be used for baseline budgeting and 

operational planning when linear growth is projected. 

 



 

17 

 

4.4 CAGR-Based Forecasting Outcomes 

We utilised the Compound Annual Growth Rate (CAGR) model to estimate what HVO 

costs would be in the future based on how much they went up on average each year from 

2022 to 2025. The costs from the past clearly went raised, going from USD 1.42/L in 2022 

to USD 1.95/L in 2025. This meant that the CAGR was around 10.99%. Using this rate 

going forward, the prediction showed that prices will go up from $2.17/L in 2026 to $3.32/L 

by 2030, which is a sign of rapid exponential development. 

 

The CAGR model doesn't use statistical fitting as ARIMA or ETS do. Instead, it assumes 

that the growth rate stays the same every year. This makes it especially good for strategic 

forecasting when there isn't a lot of previous data but growth is clear in one direction (Hor 

et al., 2023). It is very flexible since it is simple to change to take into account outside 

circumstances. 

 

The CAGR model was used as the basis for scenario predictions in this research. We 

included two possible stress scenarios: a Regulatory scenario (+15%) to show how 

carbon taxes and tougher emissions laws might affect things, and a Geopolitical scenario 

(+30%) to show how problems with fuel supply would affect things. These changes 
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demonstrated that costs may go over USD 4.30/L in really bad situations, which shows 

how useful the CAGR is for making flexible plans for military fuel. 

 

4.5 Comparative Analysis of Forecast Models 

The three forecasting models—ARIMA, ETS, and CAGR—showed different ways of 

looking at future HVO pricing. Both ARIMA and ETS made rather cautious and straight-

line predictions, saying that prices would rise gradually from around USD 2.06/L in 2026 

to about USD 2.73/L by 2030. These models are good for planning in a stable market 

because they presume that previous patterns will continue without any outside shocks. 

 

The CAGR model, on the other hand, predicted prices that were much higher, finishing 

at USD 3.32/L by 2030. This is because it has a compounding impact, which makes price 

rises bigger depending on the average yearly growth rate from 2022 to 2025 (Holzer et 

al., 2022). The CAGR model is more realistic in dynamic markets like alternative fuels 

because it is simpler and better depicts exponential demand growth and future supply 

limits. 

 

When it comes to usability, ARIMA and ETS need complicated parameter estimates, but 

they provide smoother, statistically sound predictions. The CAGR approach is simple yet 

very flexible, which makes it great for making estimates based on different scenarios. In 
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the end, all three models agree that the trend is going up, but CAGR has a more 

aggressive outlook that fits with the instability of politics and rules. Using CAGR with 

statistical models is a good way to prepare for both normal and emergency situations in 

important areas like military logistics and procurement. 

 

4.6 Year-on-Year Growth Trends Across Models 

A look at the growth rates from year to year shows how each model thinks HVO prices 

will change in the future. The ARIMA model showed the most steady development, with 

yearly increments of 4% to 6%, which is in line with how the market slowly changed. ETS 

projections exhibited a similar pattern, although they were a little more sensitive to recent 

modifications. This led to smoother but gradually greater yearly growth rates. 

 

The CAGR model, on the other hand, indicated the sharpest yearly rise, always about 

11%, which is what happened in the past between 2022 and 2025. This speed-up builds 

on itself over time, causing a big difference between ARIMA and ETS by 2030 (Macedo 

et al., 2025). This kind of disparity is particularly crucial when it comes to preparing for 

long-term costs or arranging contracts. 

 



 

20 

 

When one looks at the ARIMA and ETS models, they show a regulated increasing slope. 

The CAGR model, on the other hand, shows a stronger curve, which might mean that 

inflation is on the way. These differences show that the model one choose may have a 

big effect on budgeting, financial forecasting, and strategic readiness. Under stable 

circumstances, ARIMA and ETS are good for making short-term judgements about buying 

things. However, the CAGR model is very important for finding future financial threats and 

guiding investments in fuel diversification or efficiency measures in defence and logistics 

operations. 

 

4.7 Scenario Implications for Military Fuel Planning 

The CAGR model's scenario analysis gives military planners important information on 

how to prepare for fuel needs when they don't know what's going to happen. We came 

up with two main scenarios: Regulatory Impact (+15%) and Geopolitical Risk (+30%). 

These show how prices can go up in the future because of stricter rules and instability in 

some areas. According to the regulatory scenario, prices would reach USD 3.82/L by 

2030. According to the geopolitical scenario, prices will rise to USD 4.32/L (Valeika et al., 

2022). 

 

These results have strategic consequences. First, they show how easily military fuel 

expenditures may be affected by events across the world that are beyond their control. If 

the military keeps using HVO or other synthetic fuels, prices might go up at any time, 

which could make logistics and preparedness harder. Also, price changes might make 

long-term purchasing contracts harder to deal with, therefore they may need built-in 

contingencies or flexible provisions. 

 

The findings also show that we need to have several sources of supply, projects to make 

fuel more efficient, and strategic reserves. Military planners need to think about the worst-

case fuel costs, particularly in areas where the mission is very important or where the 

location is very sensitive (Kossarev et al., 2023). The baseline CAGR estimate shows 

that things will keep getting better, but scenario-based stress testing shows how important 

it is to take action ahead of time. This means putting money into other kinds of propulsion 
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systems and making collaborations with other regions to make HVO locally, which will 

make them less dependent on unstable global supply chains. 

 

4.8 Scenario Forecast 

The scenario forecast offers a strategic projection of Hydrotreated Vegetable Oil (HVO) 

prices from 2026 to 2030 under three distinct growth conditions—Base Case, Optimistic, 

and Pessimistic. Using the compound annual growth rate (CAGR) derived from historical 

price data (2022–2025), the Base Case scenario reflects a stable growth trajectory based 

on observed market performance. The Optimistic scenario assumes accelerated growth 

due to factors such as increasing demand for sustainable fuels, favorable policy 

incentives, and reduced production costs. Conversely, the Pessimistic scenario 

anticipates slower growth, possibly driven by geopolitical instability, raw material 

constraints, or weaker adoption in key markets.  

 

 

By simulating these trajectories, the scenario analysis provides decision-makers with a 

spectrum of potential price outcomes. This helps military fuel planners and procurement 
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strategists prepare for varying budgetary and supply chain outcomes. It highlights the 

importance of flexible long-term planning, risk mitigation strategies, and responsive policy 

adjustments in future fuel operations. 

 

4.9 Summary of Key Forecast Insights 

The five-year forecasting study for HVO pricing gave us a lot of useful information for 

making plans. All three models—ARIMA, ETS, and CAGR—showed that gasoline costs 

will go higher between 2026 and 2030. But the size and sensitivity of the projections were 

different. ARIMA and ETS expected modest growth, which is helpful for budgeting when 

the market is steady. The CAGR model, on the other hand, forecasted more aggressive 

growth, which takes into account how growth compounds over time. 

 

Scenario-based additions to the CAGR model showed that prices might go up because 

of events in politics or regulations, with costs possibly going beyond USD 4.30/L. These 

examples show how important it is to include outside factors in forecasting exercises, 

particularly in the defence and logistics industries, which are very sensitive to operational 

costs and interruptions (Roque et al., 2023). 

 

Line, bar, and growth-rate charts helped with model interpretation and made it easy to 

compare different estimates. If standard models don't take into account non-linear 

shocks, the evidence clearly shows that they may not fully reflect long-term hazards. So, 

it is best to use a mix of statistical projections for operational planning and CAGR-based 

scenarios for strategic planning. 

 

In conclusion, decision-makers should be ready for HVO costs to go up, be flexible when 

buying things, and put resilience methods at the top of their list. This complex forecasting 

system makes both financial planning and national defence preparation stronger. 
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Chapter 5: Conclusion and Recommendations 

5.1 Forecast Summary 

The research used historical pricing patterns from 2022 to 2025 to make predictions on 

HVO fuel costs from 2026 to 2030 using three different models: ARIMA, ETS, and CAGR. 

The ARIMA and ETS models gave consistent, rising price forecasts that ended up at 

around USD 2.73/L by 2030. These models show that the market will develop steadily, in 

line with historical fluctuations (Paris et al., 2021). The CAGR model, on the other hand, 

predicted a steeper path, with a price of USD 3.32/L by 2030, which was based on rising 

demand and possible supply-side pressures. 

 

All models show a steady rise, which supports the market's positive view of renewable 

diesel fuels like HVO because of changing energy priorities and environmental rules. 

Scenario simulations utilising the CAGR base showed that prices might go over USD 

4.30/L under more aggressive market situations, including when there is geopolitical 

instability or stricter regulations. This would be a warning of serious budgetary issues. 

 

The results show how important it is to have more than one model for accurate 

forecasting. Statistical models are strong, but CAGR adds strategic depth by showing 

what would happen if prices went up the most (Serrano et al., 2021). This triangulated 

method improves accuracy, helps military and industrial planners make smart, data-

driven judgements even when things are unclear, and helps them prepare for the long 

future. 

 

5.2 Linking results with objectives 

The study's goals were to predict HVO fuel costs for the next five years, check the 

correctness of the model, and look into how it may affect military strategy. These goals 

have been fulfilled in a clear way. Using historical HVO pricing data, the ARIMA, ETS, 

and CAGR models were made effectively. Each model made five-year predictions (2026–

2030) that were different from each other. For example, ARIMA and ETS showed linear 

development, whereas CAGR showed exponential growth. 
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Second, the research looked at how well the models worked and how they grew over 

time, showing how each method had its own strengths. ARIMA gave us smooth, data-

driven predictions with very little change (Hor et al., 2023). ETS reacted to changes in 

prices over time, whereas CAGR showed how prices change over time, which is important 

for scenario planning. They make up a whole picture of the future. 

 

Finally, the findings were used in real-life situations that had to do with military logistics. 

The scenario-based sensitivity analysis demonstrated that things that may happen in the 

future, such new rules or political instability, could make HVO costs go up a lot. This is in 

line with the goal of helping with strategic fuel planning and being better at predicting risks 

(Holzer et al., 2022). In short, the forecasting findings substantially complement the 

original goals by giving the defence industry a data-driven basis for planning operational 

preparedness, strategic procurement, and long-term energy resilience. 

 

5.3 Future Scope 

The present research does a good job at making predictions using ARIMA, ETS, and 

CAGR models, but there is a lot of room for improvement. First, future studies may include 

outside factors like government subsidies, carbon credit rates, and crude oil prices to 

multivariate forecasting models like ARIMAX or Vector Autoregression (VAR) (Macedo et 

al., 2025). This would assist explain the connections between policy and the market that 

have a big impact on HVO prices. 

 

Second, using monthly or quarterly pricing data instead of annual data would provide us 

a wider range of data to work with, which would help us make better predictions and find 

seasonal patterns more easily. This is especially important in markets that are unstable 

and where gasoline prices might change quickly. 

 

Third, one may look at machine learning methods like Long Short-Term Memory (LSTM) 

networks or XGBoost regressors to find complicated, non-linear trends that regular 

statistical models might not be able to find. For predicting activities that include a lot of 
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dimensions and need to be done quickly, these models are becoming more and more 

relevant. 

 

Lastly, future study might use simulations to prepare for several scenarios in military 

operations, such as modelling logistical costs, testing the supply chain under stress, and 

assessing the effects on the carbon footprint (Valeika et al., 2022). By combining 

sophisticated forecasting with strategic defence modelling, future work may make both 

budgetary resilience and mission sustainability stronger in an energy context that is 

always changing. 

 

5.4 Recommendations 

The following are the recommendations: 

Adopt a Hybrid Forecasting Approach: Military and government agencies should use 

a combination of ARIMA, ETS, and CAGR models to balance statistical accuracy with 

long-term strategic planning (Kossarev et al., 2023). This triangulated method ensures 

more reliable fuel budgeting and procurement strategies. 

 

Implement Scenario-Based Budgeting: Given the potential for price volatility, planners 

should incorporate worst-case and best-case pricing scenarios into financial models to 

prepare for regulatory shocks, geopolitical disruptions, or supply constraints. 

 

Expand Data Inputs: Future models should integrate external variables like crude oil 

benchmarks, inflation, biofuel mandates, and geopolitical risks to improve prediction 

accuracy and reflect market dynamics (Hor et al., 2023). 

 

Leverage Forecasts in Logistics and Strategy: The predicted HVO price growth should 

inform long-term logistics planning, vehicle modernization, and carbon reduction 

strategies to maintain energy security and operational efficiency across military missions. 
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Appendices 

Python Code 

# Install dependencies 

!pip install pmdarima --quiet 

 

# Import libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pmdarima as pm 

from statsmodels.tsa.holtwinters import ExponentialSmoothing 

 

# Data: Historical HVO prices 

df = pd.DataFrame({ 

    "Year": [2022, 2023, 2024, 2025], 

    "Price_USD_L": [1.42, 1.58, 1.65, 1.95] 

}).set_index("Year") 

 

# Forecast horizon 

forecast_years = list(range(2026, 2031)) 

 

# ARIMA model 

model_arima = pm.auto_arima(df, seasonal=False, trace=False, 

suppress_warnings=True) 

forecast_arima = model_arima.predict(n_periods=5) 

arima_df = pd.DataFrame({"Year": forecast_years, "ARIMA_Price_USD_L": 

forecast_arima}).set_index("Year") 

 

# ETS model 

model_ets = ExponentialSmoothing(df, trend='add', seasonal=None).fit() 

forecast_ets = model_ets.forecast(steps=5) 

ets_df = pd.DataFrame({"Year": forecast_years, "ETS_Price_USD_L": 

forecast_ets}).set_index("Year") 

 

# CAGR model 

start_price = df.iloc[0, 0] 

end_price = df.iloc[-1, 0] 

cagr = ((end_price / start_price) ** (1 / (len(df) - 1))) - 1 
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base = df.iloc[-1, 0] 

cagr_forecast = [base * ((1 + cagr) ** i) for i in range(1, 6)] 

cagr_df = pd.DataFrame({"Year": forecast_years, "CAGR_Price_USD_L": 

cagr_forecast}).set_index("Year") 

 

# Combine all 

combined = df.join(arima_df, how="outer").join(ets_df, 

how="outer").join(cagr_df, how="outer") 

 

# Chart 1: Combined Forecast Plot 

plt.figure(figsize=(12, 6)) 

plt.plot(combined["Price_USD_L"], marker='o', label="Actual") 

plt.plot(combined["ARIMA_Price_USD_L"], marker='o', label="ARIMA") 

plt.plot(combined["ETS_Price_USD_L"], marker='o', label="ETS") 

plt.plot(combined["CAGR_Price_USD_L"], marker='o', label="CAGR") 

plt.axvline(x=2025, color='red', linestyle='--', label="Forecast Start") 

plt.title("HVO Forecast (2022–2030) — All Models") 

plt.ylabel("USD per Litre") 

plt.xlabel("Year") 

plt.grid(True) 

plt.legend() 

plt.show() 

 

# Chart 2: Bar Chart — Forecasted Prices by Model 

forecast_only = combined.loc[2026:] 

forecast_only.plot(kind='bar', figsize=(12, 6)) 

plt.title("Forecasted HVO Prices by Model (2026–2030)") 

plt.ylabel("USD per Litre") 

plt.grid(True) 

plt.xticks(rotation=0) 

plt.legend() 

plt.show() 

 

# Chart 3: Growth Rate Comparison 

growth = forecast_only.pct_change() * 100 

growth.plot(marker='o', figsize=(12, 6)) 

plt.title("Year-on-Year % Growth Comparison (2027–2030)") 

plt.ylabel("Growth Rate (%)") 

plt.grid(True) 

plt.xticks(rotation=0) 
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plt.legend() 

plt.show() 

 

# Chart 4: ARIMA Confidence Interval (optional shaded bands) 

# (ARIMA does not provide interval in pmdarima.predict by default, so we'll 

simulate) 

ci_upper = forecast_arima + 0.10 

ci_lower = forecast_arima - 0.10 

 

plt.figure(figsize=(12, 6)) 

plt.plot(forecast_years, forecast_arima, label='ARIMA Forecast', 

marker='o') 

plt.fill_between(forecast_years, ci_lower, ci_upper, color='orange', 

alpha=0.3, label='±0.10 Confidence Band') 

plt.title("ARIMA Forecast with Confidence Band") 

plt.xlabel("Year") 

plt.ylabel("USD per Litre") 

plt.legend() 

plt.grid(True) 

plt.show() 

 

# Final forecast table 

pd.concat([arima_df, ets_df, cagr_df], axis=1) 

 

from matplotlib import pyplot as plt 

_df_7['CAGR_Price_USD_L'].plot(kind='line', figsize=(8, 4), 

title='CAGR_Price_USD_L') 

plt.gca().spines[['top', 'right']].set_visible(False) 

from matplotlib import pyplot as plt 

_df_6['ETS_Price_USD_L'].plot(kind='line', figsize=(8, 4), 

title='ETS_Price_USD_L') 

plt.gca().spines[['top', 'right']].set_visible(False) 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Historical HVO price data 

df = pd.DataFrame({ 

    "Year": [2022, 2023, 2024, 2025], 
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    "Price_USD_L": [1.42, 1.58, 1.65, 1.95] 

}).set_index("Year") 

 

# Calculate base CAGR 

start_price = df.iloc[0, 0] 

end_price = df.iloc[-1, 0] 

cagr_base = ((end_price / start_price) ** (1 / (len(df) - 1))) - 1 

 

# Define adjusted CAGR rates for scenarios 

cagr_optimistic = cagr_base + 0.02   # Assume faster growth 

cagr_pessimistic = cagr_base - 0.01  # Assume slower growth 

 

# Forecast years 

forecast_years = list(range(2026, 2031)) 

 

# Base price to start all scenarios from 

base_price = df.iloc[-1, 0] 

 

# Scenario forecasts 

forecast_base = [base_price * ((1 + cagr_base) ** i) for i in range(1, 6)] 

forecast_opt = [base_price * ((1 + cagr_optimistic) ** i) for i in range(1, 

6)] 

forecast_pess = [base_price * ((1 + cagr_pessimistic) ** i) for i in range(1, 

6)] 

 

# Combine into DataFrame 

scenario_df = pd.DataFrame({ 

    "Base_CAGR": forecast_base, 

    "Optimistic": forecast_opt, 

    "Pessimistic": forecast_pess 

}, index=forecast_years) 

 

# Plot Scenario Forecasts 

plt.figure(figsize=(12, 6)) 

plt.plot(df, marker='o', label="Historical") 

plt.plot(scenario_df["Base_CAGR"], marker='o', label="Base Case") 

plt.plot(scenario_df["Optimistic"], marker='o', label="Optimistic 

Scenario") 

plt.plot(scenario_df["Pessimistic"], marker='o', label="Pessimistic 

Scenario") 
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plt.axvline(x=2025, color='gray', linestyle='--', label="Forecast Start") 

plt.title("Scenario Forecasts for HVO Prices (USD/Litre)") 

plt.xlabel("Year") 

plt.ylabel("Price (USD/L)") 

plt.grid(True) 

plt.legend() 

plt.show() 

 

# Optional: Print scenario forecast table 

print("\nForecast Table (USD/L):") 

print(scenario_df.round(3)) 

 

 

 

The HVO forecasting analysis code.ipynb was conducted by using Python and validated 

in Excel spreedsheet. These files are submitted alongside this report. 
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